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Problem on extremal decomposition of the
complex plane

Iryna Denega and Yaroslav Zabolotnii

Abstract

In geometric function theory of a complex variable problems on ex-
tremal decomposition with free poles on the unit circle are well known.
One of such problem is the problem on maximum of the functional

rγ (B0, 0)

n∏
k=1

r (Bk, ak) ,

where B0, B1, B2,...,Bn, n ≥ 2, are pairwise disjoint domains in C,
a0 = 0, |ak| = 1, k = 1, n and γ ∈ (0, n], r(B, a) is the inner radius
of the domain B ⊂ C, with respect to a point a ∈ B. In the paper we
consider a more general problem in which restrictions on the geometry
of the location of points ak, k = 1, n are weakened.

In the geometric theory of univalent functions there are a number of papers
and books devoted to the problems on non-overlapping domains. These prob-
lems were developed by B. Riemann [1], L. Bieberbach [2], H. Grötzsch [3], O.
Teichmüller [4], M.A. Lavrentiev [5], G.M. Goluzin [6], James A. Jenkins [7],
Z. Nehari [8], N.A. Lebedev [9], V. Hayman [10], M. Shiffer [11], R. Kühnau
[12] and others. A summary of this results in this sphere is contained in mono-
graphs [13, 14]. In the works of these scientists the theory of univalent and
multivalent functions of complex variable was created. The tasks of complex
analysis and its application have predetermined development this direction.
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However, in spite of a significant amount of research, a number of difficult
problems in the theory of extremal problems on non-overlapping domains are
not solved. The development of methods and approaches to their solution is
relevant.

In 1934 Lavrentev [5] solved the problem of product of conformal radii
of two mutually non-overlapping simply connected domains. It was the first
result of this direction. Lavrentev used this result to some aerodynamics prob-
lems. Goluzin in [6] generalized this problem in the case of an arbitrary finite
number of mutually disjoint domains and obtained an accurate evaluation for
the case of three domains. Further Kuzmina [15] showed that the problem of
the evaluation for the case of four domains is reduced to the smallest capacity
problems in the certain continuum family and received the exact inequality
for four domains. For five or more areas full solution of the problem is not
obtained at this time. Since, the evaluation of the product of conformal radii
of mutually non-overlapping domains if n ≥ 5 without any restriction on the
domains Bk and points ak, k = 1, ..., 5 is quite difficult and interesting prob-
lem. In 1975 Lebedev [9] considered the more general extremal problem of
product of conformal radii.

Problem 1. [9] There are n various fixed points ak, k = 1, n, n > 3, on a
plane w. Functions w = fk(z), k = 1, n, are regular in the circle |z| < 1 and
univalent map circle |z| < 1 onto non-overlapping domains Bk, which contain
the corresponding points ak, k = 1, n, and in such a way, that fk(0) = ak,
k = 1, n. What about maximum of product

n∏
k=1

|f ′k(0)|γk −→ max, γk > 0, n > 3,

relatively to any functions fk(z), k = 1, n?
However, this problem is generally not solved so far. This problem was

generalized to more general classes of multiply connected domains replacing
conformal radius to the inner radius.

Until the mid 70-ies in the most works the point z = 0, when displaying
by the functions, passed into some different, but fixed points ak, k = 1, n of
the complex plane. In 1968 Tamrazov [16] put forward the idea, that we can
provide to the points ak, k = 1, n, some ”freedom”. Such problems are called
problems with ”free” poles. We consider the problems where part of the poles
are fixed, and some are free and which are called problems of ”mixed” type.

Let N and R be the sets of natural and real numbers, respectively, let C
be the complex plane, and let C = C

⋃
{∞} be its one-point compactification,

R+ = (0,∞). Let χ(t) = 1
2 (t + t−1), t ∈ R+. Let r(B, a) be the inner radius

of the domain B ⊂ C at the point a ∈ B (see, e.g., [13, 14, 17]). Inner radius
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of the domain B is associated with a generalized Green’s function gB(z, a) of
the domain B by the relations

gB(z, a) = ln
1

|z − a|
+ ln r(B, a) + o(1), z → a.

gB(z,∞) = ln |z|+ ln r(B,∞) + o(1), z →∞.

Note that to describe the extremal configurations of domains we use no-
tion of quadratic differential (see, for example, [7, 18]). Quadratic differential
G(z)dz2 on a Riemann surface is a rule which associates to each local parame-
ter z mapping a parametric neighbourhood U ⊂ R into the extended complex
plane C(z : U → C), a function Gz : z(U) → C such that for any local pa-
rameters z1 : U1 → C and z2 : U2 → C with U1 ∩ U2 non-empty, the following
holds in this intersection

Gz2(z2(p))

Gz1(z1(p))
=

(
dz1(p)

dz2(p)

)2

, p ∈ U1 ∩ U2,

here z(U) is the image of U in C under z. In other words, a quadratic dif-
ferential is a non-linear differential of type (2, 0) on a Riemann surface. The
functions entering into the definition of a quadratic differential are ordinarily
assumed to be measurable or even analytic.

Consider one open an extremal problem which was formulated in [17] in
the list of unsolved problems and then repeated in monograph [14].

Problem 2. Consider the product

In(γ) = rγ (B0, 0)

n∏
k=1

r (Bk, ak) ,

where B0, B1,..., Bn (n ≥ 2) are pairwise disjoint domains in C, a0 = 0,
|ak| = 1, k = 1, n and 0 < γ ≤ n. Show that it attains its maximum at a
configuration of domains Bk and points ak possessing rotational n-symmetry.

Presently, this problem is not completely solved, its solutions for certain
particular cases are only known. In [17] the problem was solved for any n ≥ 2
and γ = 1. In paper [19] this problem was solved for any natural n ≥ 5 and
0 < γ ≤ n but for condition αk ≤ 2√

γ , where αk := 1
π arg ak+1

ak
, k = 1, n. In

[20] the Problem 2 was solved for n ≥ 5 and 0 < γ ≤ 4
√
n. In [21] the solution

was obtained for n ≥ 5 and 0 < γ ≤ 3
√
n. In [23, 24] – for n ≥ 126 and

0 < γ ≤
√
n.

In monograph [13] the method of control functionals was proposed that
allows us weaken the requirements on the geometry of the location of points
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systems. Thus we summarized the Problem 2 that is, instead of the unit circle
we consider n-radial system of points satisfying certain conditions.

Let n ∈ N, n ≥ 2. A set of points An :=
{
ak ∈ C : k = 1, n

}
is called

n-radial system if |ak| ∈ R+, k = 1, n, and

0 = arg a1 < arg a2 < . . . < arg an < 2π.

We denote

Γk = Γk(An) := {w : arg ak < argw < arg ak+1}, an+1 := a1,

αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n,

n∑
k=1

αk = 2.

For an arbitrary n-radial system of points An = {ak}nk=1 and γ ∈ R+∪{0}
we assume

K(γ)(An) :=

n∏
k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]1− 1
2γα

2
k n∏
k=1

|ak|1+
1
4γ(αk+αk−1).

It is clear that the class of n-radial systems of points for which K(γ)(An) =
1 automatically includes all systems of n distinct points that are located on
the unit circle.

We obtained result which shows the limits of the application of the method
proposed in [25]. The following theorem characterizes the extremal domains
if 0 < γ ≤ nδ.

Theorem 1. For an arbitrary 1
3 < δ < 2

3 there is a natural n0 such that
for n ≥ n0 and 0 < γ ≤ nδ the following inequality holds

rγ (B0, 0)

n∏
k=1

r (Bk, ak) ≤ rγ(D0, 0)

n∏
k=1

r(Dk, dk), (1)

where An = {ak}nk=1 is any n-radial system of points such that K(γ) (An) ≤
1, K(0)(An) ≤ 1, Bk, k = 0, n, is any system of pairwise non-overlapping
domains, ak ∈ Bk ⊂ C, a0 = 0 ∈ B0 ⊂ C. And equality in inequality (1)
is attained, for example, if ak = dk, Bk = Dk, k = 0, n, where dk, Dk, are,
respectively, the poles and circular domains of the quadratic differential

Q(w)dw2 = − (n2 − γ)wn + γ

w2(wn − 1)2
dw2. (2)

Moreover, instead of n0 we can take

[
e

1

( 2
3
−α)

2

]
+ 1.
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Proof. For 0 < γ ≤ 3
√
n the problem was solved in [21] for any n ≥ 5. Using

that 5 ≤ e

1

( 2
3
− 1

3 )
2

for γ = 3
√
n theorem is proved. Prove the validity of the

theorem for the case γ = nδ at fixed δ ∈
(
1
3 ,

2
3

)
. Let ζ = πk(w) denote a single-

valued branch of a multivalued analytic function −i
(
e−i arg akw

) 1
αk , k = 1, n,

that realizes a univalent and conformal mapping Γk onto the right half-plane
Re ζ > 0. Consider the system of functions

ζ = πk(w) = −i
(
e−i arg akw

) 1
αk , k = 1, n.

The family of functions {πk(w)}nk=1 is called admissible for the separating
transformation of the domains Bk, k = 0, n relative to the angles {Γk}nk=1.

Let Ω
(1)
k , k = 1, n denote a domain of the plane Cζ obtained as a result of the

union of the connected component of the set πk(Bk
⋂

Γk) containing the point
πk(ak) with the own symmetric reflection relative to the imaginary axis. By

Ω
(2)
k , k = 1, n we denote the domain of the plane Cζ obtained as a result of

the union of the connected component of the set πk(Bk+1

⋂
Γk) containing the

point πk(ak+1) with the own symmetric reflection relative to the imaginary

axis, Bn+1 := B1, πn(an+1) := πn(a1). In addition, by Ω
(0)
k we denote the

domain of the plane Cζ obtained as a result of the union of the connected
component of the set πk(B0

⋂
Γk) containing the point ζ = 0 with the own

symmetric reflection relative to the imaginary axis. We denote

πk(ak) := ω
(1)
k , πk(ak+1) := ω

(2)
k , k = 1, n.

The definition of the functions πk implies that

|πk(w)− ω(1)
k | ∼

1

αk
|ak|

1
αk
−1 · |w − ak|, w → ak, w ∈ Γk,

|πk(w)− ω(2)
k | ∼

1

αk
|ak+1|

1
αk
−1 · |w − ak+1|, w → ak+1, w ∈ Γk,

|πk(w)| ∼ |w|
1
αk , w → 0, w ∈ Γk.

Using the corresponding results of works [13, 17] we have the inequalities

r (Bk, ak) ≤

r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k−1, ω

(2)
k−1

)
1
αk
|ak|

1
αk
−1 · 1

αk−1
|ak|

1
αk−1

−1


1
2

, k = 1, n, (3)

r (B0, 0) ≤

[
n∏
k=1

rα
2
k

(
Ω

(0)
k , 0

)] 1
2

. (4)
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Inequalities (3) and (4) yield the relation

rγ (B0, 0)

n∏
k=1

r (Bk, ak) ≤

≤
n∏
k=1

αk

n∏
k=1

|ak|
|akak+1|

1
2αk

[
n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
r
(

Ω
(1)
k , ω

(1)
k

)
r
(

Ω
(2)
k , ω

(2)
k

)] 1
2

.

(5)
It is known that the following functional

Y3(t1, t2, t3, D1, D2, D3, d1, d2, d3) = (6)

=
rt1(D1, d1) · rt2(D2, d2) · rt3(D3, d3)

|d1 − d2|t1+t2−t3 · |d1 − d3|t1−t2+t3 · |d2 − d3|−t1+t2+t3

is invariant with respect to all conformal automorphisms of the extended com-
plex plane C, tk ∈ R+, {Dk}3k=1 is any system of non-overlapping domains
such that dk ∈ Dk ⊂ C, k = 1, 2, 3.

Using formulae (5) and (6) after simple calculations we obtain

In(γ) ≤

(
n∏
k=1

αk

)
·
n∏
k=1

|ak|
|akak+1|

1
2αk

×

×


n∏
k=1

rγα
2
k

(
Ω

(0)
k , 0

)
· r
(

Ω
(1)
k , ω

(1)
k

)
· r
(

Ω
(2)
k , ω

(2)
k

)
|ω(1)
k · ω

(2)
k |γα

2
k |ω(1)

k − ω
(2)
k |2−γα

2
k


1
2

× (7)

×

[
n∏
k=1

|ω(1)
k · ω

(2)
k |

γα2
k |ω(1)

k − ω
(2)
k |

2−γα2
k

] 1
2

,

where |ω(1)
k | = |ak|

1
αk , |ω(2)

k | = |ak+1|
1
αk , |ω(1)

k − ω(2)
k | = |ak|

1
αk + |ak+1|

1
αk ,

k = 1, n. Thus summing the above relations we obtain

In(γ) ≤ 2
n− γ2

n∑
k=1

α2
k ·

(
n∏
k=1

αk

)
·
n∏
k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]1− γα2
k

2

× (8)

×
n∏
k=1

|ak|1+
1
4γ(αk+αk−1) ·

{
n∏
k=1

Y3(γα2
k, 1, 1,Ω

(0)
k ,Ω

(1)
k ,Ω

(2)
k , 0, ω

(1)
k , ω

(2)
k )

} 1
2

.
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It is clear that for any k = 1, n we can indicate conformal automorphism

ζ = Tk(z) of the plane of complex numbers C such that Tk(0) = 0, Tk

(
ω
(s)
k

)
=

(−1)s · i, D(q)
k := Tk

(
Ω

(q)
k

)
, k = 1, n, s = 1, 2, q = 0, 1, 2. Under condition

of conformal invariance of the functional (7) we obtain

Y3

(
γα2

k, 1, 1,Ω
(0)
k ,Ω

(1)
k ,Ω

(2)
k , 0, ω

(1)
k , ω

(2)
k

)
=

= Y3

(
γα2

k, 1, 1, D
(0)
k , D

(1)
k , D

(2)
k , 0,−i, i

)
,

where k = 1, n and

Y3

(
γα2

k, 1, 1, D
(0)
k , D

(1)
k , D

(2)
k , 0,−i, i

)
=

=
rα

2
kγ
(
D

(0)
k , 0

)
· r
(
D

(1)
k ,−i

)
· r
(
D

(2)
k , i

)
22−γα

2
k

.

Hence

In(γ) ≤ 2
n− γ2

n∑
k=1

α2
k ·

(
n∏
k=1

αk

)
·K(γ) (An)×

×


n∏
k=1

rα
2
kγ
(
D

(0)
k , 0

)
· r
(
D

(1)
k ,−i

)
· r
(
D

(2)
k , i

)
22−γα

2
k


1
2

.

Taking last condition and condition (8) into account we obtain the following
estimate

In(γ) ≤ 2
n− γ2

n∑
k=1

α2
k

(
n∏
k=1

αk

)
·K(γ)(An) · 2

−n+ γ
2

n∑
k=1

α2
k×

×

[
n∏
k=1

rα
2
kγ
(
D

(0)
k , 0

)
r
(
D

(1)
k ,−i

)
r
(
D

(2)
k , i

)] 1
2

.

Taking into account the conditions of the theorem we obtain the inequality

In(γ) ≤

(
n∏
k=1

αk

)[
n∏
k=1

rα
2
kγ
(
D

(0)
k , 0

)
r
(
D

(1)
k ,−i

)
r
(
D

(2)
k , i

)] 1
2

, (9)

where D
(0)
k , D

(1)
k , D

(2)
k are circular domains of the quadratic differential

Q(w)dw2 =
(4− α2

kγ)w2 − α2
kγ

w2(w2 + 1)2
dw2
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(0 ∈ D(0)
k , −i ∈ D(1)

k , i ∈ D(2)
k ). Using paper [17], from (9), we have

In(γ) ≤ (10)

≤

(
n∏
k=1

αk

)[
n∏
k=1

2τ
2
k+6 · τ τ

2
k

k · (2− τk)−
1
2 (2−τk)

2

· (2 + τk)−
1
2 (2+τk)

2

]1/2
,

where τk = αk
√
γ, k = 1, n.

Note, that in [19] the problem was completely solved if n ≥ 5 and αk
√
γ ≤

2. Thus we have to prove its to the case α0
√
γ > 2, where α0 = max

k
αk. Thus

consider the case when

α0
√
γ ≥ 2, α0 = max

k
αk.

The following equality holds

In(γ) =

n∏
k=1

[r(B0, 0)r(Bk, ak)]
γ
n

[
n∏
k=1

r(Bk, ak)

]1− γn
.

From Lavrent’ev’s theorem [5] it follows that

r(B0, 0)r(Bk, ak) ≤ |ak|2.

Then

In(γ) ≤
n∏
k=1

|ak|
2γ
n

[
n∏
k=1

r(Bk, ak)

]1− γn
.

From K(0)(An) ≤ 1 we have
n∏
k=1

|ak| ≤ 1, then

In(γ) ≤

[
n∏
k=1

r(Bk, ak)

]1− γn
.

From Theorem 5.1.1 [13]

n∏
k=1

r(Bk, ak) ≤ 2n
n∏
k=1

αk ·K(0)(An).

Therefore

In(γ) ≤

[
2n ·

n∏
k=1

αk

]1− γn
. (11)
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Since
n∑
k=1

αk = 2 then

n∏
k=1

αk ≤ α0

n∏
k=1,k 6=k0

αk ≤ α0


n∑

k=1,k 6=k0
αk

n− 1


n−1

= α0

(
2− α0

n− 1

)n−1
,

where α0 := αk0 := max
1≤k≤n

αk. Thus, from (11) we have

In(γ) ≤
[
2nα0(2− α0)n−1(n− 1)−(n−1)

]1− γn
.

Let

I0n(γ) = rγ (D0, 0)

n∏
k=1

r (Dk, dk) ,

where 0 ∪ {dk}nk=1 and {Dk}nk=0 are, respectively, the poles and circular do-
mains of the quadratic differential (2). From [13, 17, 19] taking into account
(10) we obtain

I0n(γ) =

(
4

n

)n (
4γ
n2

) γ
n(

1− γ
n2

)n+ γ
n

(
1−

√
γ

n

1 +
√
γ

n

)2
√
γ

.

Let

Pn(γ) :=
In(γ)

I0n(γ)
.

Then

Pn(γ) ≤
[
2 · 2n−1 · α0(2− α0)n−1(n− 1)−(n−1)

]1− γn
(
4
n

)n−1−γ(1− 1
n ) ( 4

n

)γ+1− γn ( 4γ
n2

) γ
n
(
1− γ

n2

)−n− γn ( 1−
√
γ

n

1+
√
γ

n

)2
√
γ
,

α0 ≥
2
√
γ
>

2

n
.

So,

Pn(γ) ≤
[n

4

]γ+1
[
1− 1
√
γ

]n−1−γ n−1
n
(
n

γ

) γ
n (

1− γ

n2

)n+ γ
n ×

×

(
1 +

√
γ

n

1−
√
γ

n

)2
√
γ (

4
√
γ

)1− γn ( n

n− 1

)n−1−γ n−1
n

.
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Hence

Pn(nδ) ≤
[n

4

]nδ+1
[
1− 1

n
δ
2

]n−1− n−1

n1−δ (
n1−δ

) 1

n1−δ

(
1− 1

n2−δ

)n+ 1

n1−δ

×

×

1 + 1

n1− δ
2

1− 1

n1− δ
2

2n
δ
2 (

4

n
δ
2

)1− 1

n1−δ
(

n

n− 1

)n−1− n−1

n1−δ

.

Let

g(x) =
[x

4

]xδ+1

·
[
1− 1

x
δ
2

]x−1− x−1

x1−δ

, f1(x) =
(
x1−δ

) 1

x1−δ ,

f2(x) =

(
1− 1

x2−δ

)x+ 1

x1−δ

, f3(x) =

1 + 1

x1− δ
2

1− 1

x1− δ
2

2x
δ
2

,

f4(x) =

(
4

x
δ
2

)1− 1

x1−δ

, f5(x) =

(
x

x− 1

)x−1− x−1

x1−δ

.

Explore these functions for x ∈ [e9;∞). For g(x) we obtain

ln (g(x)) =
(
xδ + 1

)
ln
x

4
+
(
x− 1− xδ + xδ−1

)
ln

(
1− 1

x
δ
2

)
.

(ln (g(x)))
′

=
(
δxδ−1

)
ln
x

4
+xδ−1+

1

x
+
(
1− δxδ−1 + (δ − 1)xδ−2

)
ln

(
1− 1

x
δ
2

)
+

+
1

1− 1

x
δ
2

· δ
2

1

x1+
δ
2

(
x− 1− xδ + xδ−1

)
.

Since x ≥ e9 then the following inequalities hold

ln

(
1− 1

x
δ
2

)
= − 1

x
δ
2

− 1

2xδ
− 1

3x
3δ
2

− ... ≤ − 1

x
δ
2

− 1

2xδ
,

1

1− 1

x
δ
2

≤ 1

1− 1

(e9)
1
6

< 1, 3,
(
x− 1− xδ + xδ−1

)
> 0,

(
1− δxδ−1 + (δ − 1)xδ−2

)
> 0.

Prove that for x ≥ e
1

( 2
3
−δ)

2

and fixed δ the inequality holds

lnx ≤ x 2
3−δ.
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Consider the function h(x) = x
2
3−δ − lnx for x ≥ e

1

( 2
3
−δ)

2

. Thus

(h(x))
′

=
1

x

((
2

3
− δ
)
x

2
3−δ − 1

)
.

On the other hand(
2

3
− δ
)
x

2
3−δ − 1 ≥

(
2

3
− δ
)(

1
2
3 − δ

+
1

2
(
2
3 − δ

)2
)
− 1 =

1

2
(
2
3 − δ

) > 0.

Thus, the function h(x) is monotonically increasing for x ∈

[
e

1

( 2
3
−δ)

2

; +∞

)
and

h

(
e

1

( 2
3
−δ)

2

)
= e

1

( 2
3
−δ) − 1(

2
3 − δ

)2 > 0.

It follows that lnx ≤ x 2
3−δ. Taking last inequalities into account we obtain

(ln (g(x)))
′
<

δ

x
1
3

+
1− δ ln 4

x1−δ
− 1− 0, 65δ

x
δ
2

− 1

2xδ
+

0, 35δ

x1−
δ
2

+
δ
2 + 1

x
−

−0, 65δ

x1+
δ
2

+
1− 0, 35δ

x2−
δ
2

+
1− δ
x2

.

Denote

A(x) =
δ

x
1
3

+
1− δ ln 4

x1−δ
− 1− 0, 65δ

x
δ
2

,

B(x) = − 1

2xδ
+

0, 35δ

x1−
δ
2

+
δ
2 + 1

x
,

C(x) = −0, 65δ

x1+
δ
2

+
1− 0, 35δ

x2−
δ
2

+
1− δ
x2

.

Using the standard methods of researching the functions for fixed δ and x ∈[
e

1

( 2
3
−δ)

2

; +∞

)
we have that

A(x) =
1

x
δ
2

(
−(1− 0, 65δ) +

δ

x
1
3−

δ
2

+
1− δ ln 4

x1−
3δ
2

)
and

−(1− 0, 65δ) +
δ

x
1
3−

δ
2

+
1− δ ln 4

x1−
3δ
2

< −0, 5 +
2
3

e

1

2( 2
3
−δ)

+
0, 6

e

3

2( 2
3
−δ)

<
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< −0, 5 + 0, 15 + 0, 01 = −0, 34 < 0.

Thus A(x) < 0 for all x. Similarly,

B(x) = −0, 3

xδ
+

0, 35δ

x1−
δ
2

−0, 2

xδ
+
δ
2 + 1

x
<

(
−0, 3

xδ
+

0, 3

x1−
δ
2

)
+

(
−0, 2

xδ
+

1, 4

x

)
< 0.

C(x) =
1

x1+
δ
2

(
−0, 65δ +

1− 0, 35δ

x1−δ
+

1− δ
x1−

δ
2

)
<

1

x1+
δ
2

(
−0, 2 +

1

x
1
3

+
1

x
2
3

)
< 0.

Since (ln (g(x)))
′
< A(x) + B(x) + C(x) then (ln (g(x)))

′
< 0. Thereby, the

function g(x) is monotonically decreasing for fixed δ and x ∈

[
e

1

( 2
3
−δ)

2

; +∞

)
.

Consider f1(x). It is not difficult to obtain

ln f1(x) =

(
1

x1−δ

)
ln
(
x1−δ

)
.

Thus we have(
ln
(
x1−δ

) 1

x1−δ
)′

=

(
1

x1−δ
ln
(
x1−δ

))′
= (1− δ)

(
1

x1−δ
lnx

)′
=

= (1−δ)
(
−(1− δ)x−(2−δ) lnx+ x−(2−δ)

)
= (1−δ)x−(2−δ) (−(1− δ) lnx+ 1) .

Hence (ln f1(x))
′

= (−(1− δ) lnx+ 1) < 0 and x > e
1

1−δ . Since e
1

1−δ for

1
3 < δ < 2

3 does not exceed e
1

1− 2
3 = e3 < 21, then for x ∈ [e9; +∞] the

function f1(x) is monotonically decreasing. Thus for any n ≥ e9 the following
inequality holds (

x1−δ
) 1

x1−δ ≤
(

(e9)
1
3

) 1

(e9)
1
3 ≤ 1, 06.

It’s clear that
(
1− 1

x2−δ

)
< 1 and therefore

(
1− 1

x2−δ

)x+ 1

x1−δ < 1. That is for
any x ≥ e9 we obtain

f2(x) < 1.

Consider f3(x).

ln f3(x) = 2x
δ
2 ln

(
1 +

1

x1−
δ
2

)
+ 2x

δ
2 ln

(
1− 1

x1−
δ
2

)
and thus

(ln f3(x))
′

= δx
δ
2−1 ln

(
1 +

2

x1−
δ
2

)
− 4

(
1− δ

2

)
xδ−2 · 1

x2−δ − 1
≤ 0.
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So, for x ≥ e9 the function f3(x) is monotonically decreasing and for any
n ≥ e9 we have1 + 1

n1− δ
2

1− 1

n1− δ
2

2n
δ
2

≤

1 + 1

(e9)
2
3

1− 1

(e9)
2
3

2·(e9)
1
3

≤ 1, 22.

As for f4(x) it is clear(
4

x
δ
2

)1− 1

x1−δ

≤
(

4

(e9)
1
6

)1− 1

(e9)
1
3 ≤ 1.

Thus, the function f4(x) on the interval [e9; +∞) is monotonically decreasing
and for any n ≥ e9 we obtain(

4

x
δ
2

)1− 1

x1−δ

≤ 1.

Since x
x−1 > 1 for any x ∈ [e9; +∞), then

f5(x) =

(
x

x− 1

)x−1− x−1

x1−δ

≤
(

1 +
1

x− 1

)x−1
.

The function
(

1 + 1
x−1

)x−1
is monotonically increasing on the interval [e9; +∞)

and

lim
x→∞

(
1 +

1

x− 1

)x−1
= e,

thus for any n ≥ e9 (
n

n− 1

)n−1− n−1

n1−δ

≤ e.

Taking properties of the investigated functions fj(x), j = 1, 5 into account we
obtain

Pn(nδ) = g(x)

5∏
j=1

fj(n) < g(x) · 1, 06 · 1 · 1, 22 · 1 · e < 5g(x).

Since g(x) < 0, 1 for x = e

1

( 2
3
−δ)

2

, therefore

Pn(γ) ≤ 0, 5 < 1.
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Let γ ∈ (1, γn ]. Taking into account that the function[
2n · 2
√
γ

(
2− 2
√
γ

)n−1
(n− 1)−(n−1)

]1− γn
for fixed n increases monotonically with respect to γ on the interval (1, γn ],
and function I0n(γ) monotonically decreases with respect to γ on the same
interval, since

(ln I0n(γ))′ =

(
1

n
ln

(
4γ

n2 − γ

)
+

1
√
γ

ln

(
n−√γ
n+
√
γ

))
< 0

for each fixed n. Then we get that

Pn(γ) =
In(γ)

I0n(γ)
<
In(γn)

I0n(γn)
= Pn(γn) < 1.

Thus, at these parameter values, extremal values of the functional In(γ) are
not achieved. For γ ∈ (1, γn ], α0

√
γ ≥ 2, n ≥ 2, the following inequality holds

In(γ) < I0n(γ).

It follows that the configuration written in the hypothesis of the Theorem 1 is
extremal. So, we have to investigate the case α0

√
γ < 2. Using the results of

the papers [19, 26, 27], we obtain the validity of the Theorem 1 and for this
case too.

The Theorem 1 can be obtained in another simpler form. Let δ = 2
3−

1√
lnn

.

Then we obtain that n = e

1

( 2
3
−δ)

2

. And the following statement is true.

Theorem 2. Let n ∈ N, n ≥ e9, γ ∈ (0, γn], γn = n
2
3−

1√
lnn . Then for any

n-radial system of points An = {ak}nk=1 such that K(γ) (An) ≤ 1, K(0)(An) ≤
1, and any system of pairwise non-overlapping domains Bk, ak ∈ Bk ⊂ C,
a0 = 0 ∈ B0 ⊂ C (k = 1, n), the inequality (1) holds. Equality is attained in
the same case as in Theorem 1.

For arbitrary δ ≥ 2
3 we can not apply the method used in the Theorem 1.

Because under this condition limPn(γ) = +∞ at n → ∞ therefore, we can
not find extremal configurations of the domains.

From Theorem 1 we obtain the following result.
Theorem 3. Under the conditions of Theorem 1, the following inequality

holds

rγ (B0, 0)

n∏
k=1

r (Bk, ak) ≤
(

4

n

)n (
4γ
n2

) γ
n(

1− γ
n2

)n+ γ
n

(
1−

√
γ

n

1 +
√
γ

n

)2
√
γ

. (12)
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Equality in inequality (12) is attained when points ak and domains Bk, k =
0, n, are, respectively, the poles and circular domains of the quadratic differ-
ential (2).
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